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Abstract 30	
One of the major challenges for computational models of timing and time perception is to identify a neurobiological 31	
plausible implementation that predicts various behavioral properties, including the scalar property and retrospective 32	
timing. The available timing models primarily focus on the scalar property and prospective timing, while virtually 33	
ignoring the computational accessibility. Here, we first selectively review timing models based on ramping activity, 34	
oscillatory pattern, and time cells, and discuss potential challenges for the existing models. We then propose a 35	
multifrequency oscillatory model that offers computational accessibility, which could account for a much broader range 36	
of timing features, including both retrospective and prospective timing. 37	
Keywords 38	
Interval timing, retrospective timing, prospective timing, computational accessibility, neural oscillators, memory 39	
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1. Introduction 41	

 42	

One key feature of interval timing, the scalar property, is that the estimation error, measured by the 43	

standard deviation, scales linearly with the magnitude of the estimated interval, approximately 44	

following Weber’s law. The scalar property was first incorporated into the scalar timing theory 45	

(STT) — an information-processing model of the internal clock (Church, 2003; Church et al., 1994; 46	

Gibbon, 1977; Gibbon et al., 1984). The STT proposes that interval timing comes from the 47	

interaction of three processing stages: a central clock, memory, and a decision process. At the clock 48	

level, a pacemaker generates raw time representation “ticks” through a Poisson process, mimicking 49	

neuronal spike trains. Those ticks pass through a switch to an accumulator. At the onset of a timed 50	

stimulus, the switch closes, allowing the accumulator to count the raw ticks until the switch opens. 51	

It then transfers the accumulated ticks to working memory, representing the timed interval. At the 52	

final stage, the timed interval is compared with a long-term memory representation of biologically 53	

important intervals. The original STT successfully predicts many results in animal timing (Gibbon, 54	

1977; Gibbon et al., 1984; Meck, 1983), as well as behavioral timing from humans (Allman et al., 55	

2014, 2016; Buhusi & Meck, 2005). 56	

The key ingredient of the STT is the scalar property. Using a linear accumulator, Gibbon 57	

and colleagues (1992) have noticed that the first passage time T at a constant threshold only 58	

produces a gamma distribution if the variances mainly come from the Poisson clock and the 59	

decision stage. The ratio of the standard deviation over the mean interval from the gamma 60	

distribution, however, does not generate constant scalar property. To amend this, Gibbon and 61	

colleagues argued that the scalar property is likely caused by the variability from the memory 62	

translation of the accumulated ‘ticks’ (Gibbon, 1977; Gibbon et al., 1984). Recently Beck and 63	

colleagues (2012) also reached a similar conclusion, suggesting that a global nuisance correlation 64	

in memory representation is a potential cause of the scalar property. 65	

Although the information-processing STT can successfully account for a large proportion 66	

of the behavioral data, the model has been criticized for its lack of neurophysiologically plausible 67	

implementation (e.g., Allman et al., 2014; Buhusi & Meck, 2005). Over the past few decades, 68	

researchers have developed multiple timing theories, varying from the original information-69	

processing STT (Church, 2003; Church et al., 1994; Gibbon, 1977; Gibbon et al., 1984), to the 70	

behavioral theory of timing (BeT) (Killeen & Fetterman, 1988) and the Spectral Timing Model 71	

(Grossberg & Merrill, 1992, 1996; Grossberg & Schmajuk, 1989), to neurobiological plausible 72	

models, such as the striatal beat-frequency (SBF) (Matell & Meck, 2004; Oprisan & Buhusi, 2011), 73	

opponent Poisson drift–diffusion process (opDDM) (Balcı & Simen, 2014; Simen et al., 2011), 74	
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state-dependent neural networks (Buonomano, 2000; Goel & Buonomano, 2014), and cerebellar, 75	

hippocampal, and striatal time cells (Eichenbaum, 2014; Lusk et al., 2016; MacDonald et al., 2011, 76	

2014). Based on the representation of time, we can roughly categorize interval timing theories into 77	

the ramping accumulation, state-dependent, delay-line, neural oscillators, memory-based models 78	

(Addyman et al., 2016; Hardy & Buonomano, 2016; Hass & Durstewitz, 2016), and time cells 79	

(Eichenbaum, 2014; MacDonald et al., 2011; Rolls & Mills, 2019). Here, we selectively review 80	

three major classes of neurobiological plausible timing accounts and empirical findings of interval 81	

timing behaviors that challenge those accounts. We then further propose an integrated model that 82	

incorporates multifaceted timing features for both prospective and retrospective timing. 83	

 84	

2. Ramping Accumulation, Oscillatory Models and Time Cells 85	

 86	

One implicit assumption of classical internal clock models is that the accumulator linearly 87	

accumulates ‘ticks’ (Gibbon, 1977; Gibbon et al., 1984). Given that a long interval requires more 88	

resources than a short interval, the accumulator needs unbound capacity for extremely long 89	

intervals, which is unlikely to be implemented in biological organisms. Instead of using simple 90	

linear accumulation, recent neural integration models, such as the opDDM (Balcı & Simen, 2014; 91	

Simen et al., 2011, 2016), adopt stochastic ramping activity as the temporal integrator, which starts 92	

at the beginning of the interval and consistently increases till the end of the interval. The stochastic 93	

ramping process is the central key element of drift–diffusion models (DDMs), which have been 94	

widely applied to reaction-time paradigms (Chen et al., 2021; e.g., Ratcliff et al., 2003) on studying 95	

temporal cognition (Matthews & Meck, 2016). Ramping is also a common pattern of neuronal 96	

activity in the frontal cortex (Parker et al., 2014), the lateral intraparietal (LIP) area (Jazayeri & 97	

Shadlen, 2015), and the posterior insular cortex (Wittmann et al., 2010) during temporal decision-98	

making (for a review, see Narayanan, 2016). More recently, ramping temporal cells have been 99	

shown in the lateral entorhinal cortex (Tsao et al., 2018). The opDDM assumes the decision variable 100	

of a timing process is represented by the difference of spike counts from two Poisson processes. 101	

For a single timing task, the opDDM reduces to one Poisson process, which is similar to the STT 102	

model. One critical feature of the opDDM that differs from the STT is that the opDDM assumes 103	

the ramping activity reaches a fixed decision barrier at a specific temporal criterion (e.g., when 104	

subjects get rewards with their response, such as pressing a lever). By using a fixed decision barrier 105	

across different durations, an assumption originated from BeT (Killeen & Fetterman, 1988), the 106	

opDDM nicely avoids the unbound problem. In addition, it produces time scale invariance as long 107	

as the decision barrier is constant. However, this fixed decision barrier comes at a cost. The drift 108	
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rate (internal Poisson clock speed) must be varied across different durations. The longer the duration 109	

is, the lower the drift rate (clock speed) must be. Although the models can capture various features 110	

from interval timing, such as one-trial learning (Simen et al., 2011) and learning of cyclically 111	

varying time intervals (Luzardo et al., 2017), under the assumption of varied drift rates across 112	

different durations, the explanatory power of the opDDM is limited to prospective timing for 113	

individual to-be-timed intervals. The model falls short for timing retrospective intervals with 114	

unknown onsets. 115	

Instead of adopting ramping representation, oscillator timing models, such as the oscillatory 116	

striatal beat-frequency model (SBF, Matell & Meck, 2000, 2004; Oprisan & Buhusi, 2011), 117	

consider the oscillatory firing patterns of cortical neurons as interval encoders. The SBF model 118	

assumes cortical oscillatory neurons with rates ranging between 5 and 15 Hz synchronize to the 119	

onset of relevant stimuli driven by dopamine release from the ventral tegmental area (VTA) (Matell 120	

& Meck, 2000, 2004). Those cortical oscillatory activities, which change over time, are transmitted 121	

to medium spiny neurons (MSNs) in the basal ganglia. Through temporal learning, the synaptic 122	

weights between MSNs and cortical neurons with different endogenous oscillatory periods are 123	

formed for coincidence detection of the duration encoded by the MSNs. A time interval is detected 124	

by the similarity between the oscillatory pattern and the pattern of the comparison interval stored 125	

in the memory. Given that each spiny neuron receives tens of thousands of inputs from cortical 126	

neurons, this level of convergence permits coding suprasecond intervals with integrating a few 127	

primitives represented by different subsecond oscillation frequencies in the cortex. The SBF model 128	

assumes variations in global oscillation frequencies (similar to the between-trial variations in clock 129	

speeds used in STT) and variations in the start and stop response thresholds, which lead to scalar 130	

behavior in the cortical coherence function (Matell & Meck, 2004). Several recent oscillatory 131	

models extend the original SBF in various aspects. For instance, replacing oscillators with 132	

biophysically realistic and noisy Morris–Lecar neurons (SBF-ML) can explain the pharmacological 133	

clock and memory patterns observed in the literature (Buhusi & Oprisan, 2013; Oprisan & Buhusi, 134	

2011). Using coupled excitatory–inhibitory oscillation (EIO), Gu and colleagues (2015) unified a 135	

shared oscillatory process of interval timing and working memory; both are inextricably 136	

intermingled. The extension permits the model to store multiple intervals in the working memory 137	

with an overlapping ensemble of EIO oscillators, offering a possibility of how multiple temporal 138	

intervals are encoded simultaneously (De Corte & Matell, 2016a; Merchant et al., 2008). Both SBF-139	

ML and EIO models share the same coincidence detection mechanism that is proposed in the 140	

original SBF for identifying a target interval (Matell & Meck, 2000): a set of oscillatory neurons 141	

synchronize at the onset of a to-be-timed interval, and the pattern at the offset of the interval is 142	
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stored in the memory system. Like those ramping accumulation models, oscillatory models are 143	

primarily suitable for prospective timing. 144	

It is worth noting that one early multiple-oscillator model uses a slightly different approach 145	

(Church & Broadbent, 1990). In the multiple-oscillator model, oscillators vary from very low to 146	

high frequencies, equally sampled from a log-space (e.g., 0.1, 0.2, 0.4 Hz…), analogous to multiple 147	

slow to fast pacemakers. It is assumed that human and other animals could not retrieve the precise 148	

phase of an oscillator, rather merely the half-phase (i.e., binary states). A set of phases, however, 149	

can represent time. The reinforced interval is detected by similarity measures between the 150	

represented interval and the retrieved reference memory (Church & Broadbent, 1990). The proposal 151	

of the multiple-oscillator model shares some similarity to the spectral timing model (Grossberg & 152	

Merrill, 1996; Grossberg & Schmajuk, 1989) to cover a wide range of time intervals. Instead of 153	

using multifrequency oscillators, the spectral timing model assumes a population of neurons that 154	

reacts to a stimulus at different times. Through reinforcement learning, the teaching signal (i.e., the 155	

unconditioned stimulus) can change the weights of neurons, such that the population sum of the 156	

activities can time the to-be-learned interval properly. However, the multiple-oscillator model is 157	

special in terms of interval encoding. Unlike arbitrary patterns used in other oscillatory models, the 158	

oscillatory pattern is much like our binary coding system, maintaining temporal distances among 159	

represented intervals computationally accessible. Using oscillators with relatively low frequencies, 160	

the multiple-oscillator model can encode long range intervals, such as minutes, hours, and days. In 161	

fact, recent studies (Rolls & Mills, 2019; Tsao et al., 2018) suggest that the neurons that encode 162	

time in the lateral entorhinal cortex have long-firing-rate timescales and using integrate-and-fire 163	

attractor neural networks; the oscillatory excitation and inhibition can be over minutes. The 164	

excitation and inhibition of two opponent neurons in the attractor network can also mimic the half-165	

phase changes in oscillatory networks. Studies have also shown animals can target specific hours 166	

in a day (for a review, see Gallistel & King, 2009), suggesting that animals at least use some sort 167	

of low-oscillatory timekeepers, including circadian rhythm, for tracking long intervals. 168	

Recent studies on striatum, cerebellum, entorhinal cortex, and hippocampal neurons have 169	

revealed the existence of time cells that fire at successive moments in temporally structured 170	

experiences (Eichenbaum, 2014; MacDonald et al., 2011). The evidence comes from the firing 171	

patterns of ensembles of hippocampal Cornu Ammonis area 1 (CA1)  neurons in rats gradually 172	

changing over the entire testing session, and even when the position of the animal was relatively 173	

constant (Eichenbaum, 2017; MacDonald et al., 2011). More interestingly, time cells in CA1 exhibit 174	

scalar properties. Time cells that fire later in a sequence also fire for a longer period. The 175	

hippocampus is largely involved in episodic memory and encodes information based upon the 176	
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temporal organization of events, which makes the hippocampus an ideal brain structure for discrete 177	

time events and retrospective timing (Issa et al., 2020; Lusk et al., 2016; MacDonald et al., 2014). 178	

One distinguishing feature of the time cells is that timing is encoded by a sequential activation of 179	

firing chains that are likely generated by an internally driven sequence within the hippocampal 180	

circuitry (Buzsáki & Llinás, 2017). The ordinal sequences in the firing chains can represent the 181	

past, present, and future (Frankland & Bontempi, 2005; Buzsáki & Llinás, 2017), permitting 182	

temporal-order comparison and potential arithmetic comparison among different intervals. Friston 183	

and Buzsáki (2016) further suggested that the internally driven sequence could purely encode time 184	

without reference to any particular events. Such functional segregation of ‘when’ from ‘what’ and 185	

‘where’ would be more efficient to encode when an event occurs than every combination of when, 186	

what and where together. The content of the sequence depends on how events are ‘bound’ to 187	

content-free temporal sequences through context-sensitive association (Friston & Buzsáki, 2016). 188	

In this perspective, the sequence of firing chains of time cells could be regarded as timestamps 189	

stamping events with their own ordinal structure. Recently, Rolls and Mills (2019) further suggested 190	

that connections between events and time representation in hippocampal neurons are converted 191	

from ramping time cells in the lateral entorhinal cortex, with the latter serving as intrinsic clocks. 192	

Despite different approaches, those timing models successfully account for multiple 193	

empirical findings from neuronal to behavioral levels. The ramping process can well predict the 194	

behavioral response distributions (e.g., the inverse Gaussian distribution by the opDDM; Balcı & 195	

Simen, 2014; Simen et al., 2011, 2016), and is observed in the posterior insular cortex during 196	

temporal decision-making (Wittmann et al., 2010) and in the lateral entorhinal cortex (Tsao et al., 197	

2018). The opDDM can further correctly predict a level of skew that is approximately three times 198	

the coefficient of variation (Simen et al., 2016). The neural oscillator models, on the other hand, 199	

are grounded in neuronal networks of timing system in the brain, and consistent with the anatomical, 200	

behavioral, and pharmacological evidence (Allman & Meck, 2012; Coull et al., 2010; Merchant et 201	

al., 2013). The EIO model (Gu et al., 2015), for example, is constructed such that its mechanisms 202	

are consistent with phase–amplitude coupling (PAC) between theta and gamma oscillations thought 203	

to be involved in both working memory and timing (Axmacher et al., 2010; Canolty & Knight, 204	

2010; Jensen & Colgin, 2007). Integrate-and-fire attractor networks simulating the lateral 205	

entorhinal cortex can produce half-phase oscillatory patterns for coding the seconds to minutes 206	

range of time (Rolls & Mills, 2019). Using sequences of firing chains of time cells permits the 207	

hippocampus to create time references for memory of elapsed time, which likely applies to 208	

retrospective timing (Eichenbaum, 2014; MacDonald et al., 2011, 2014). 209	

 210	
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3. Challenges for Current Interval Timing Models 211	

 212	

It is important to note that most of the interval timing models are designed for prospective timing, 213	

which has clear onset and offset signals. The biggest challenge for timing models is to make correct 214	

predictions for the anatomical, behavioral, and pharmacological evidence (Allman et al., 2014), and 215	

for both prospective and retrospective timing (MacDonald et al., 2014). 216	

 217	

3.1. Step versus Ramping during Dynamic Acquisition 218	

 219	

Animal studies on timing often use the peak-interval procedure, where animals learn to expect food 220	

rewards that come after a fixed delay. One typical pattern is that they cluster their responses around 221	

the reward time (i.e., peak interval), showing a low–high–low step pattern (Church et al., 1994). 222	

Animals initially respond sporadically, then shift to high-rate responses, and set back to low-rate 223	

responses after the reward is given during the training or during the probe when the reward is not 224	

delivered after a certain long interval. The step pattern suggests that predicting intervals in animals 225	

is not a single-shot estimation, rather a target range in which the acquired temporal interval likely 226	

occurs. The target range shown in the step-like response profile has two important temporal 227	

parameters: response onset (‘start’) and offset (‘stop’). Interestingly, the single-trial analysis of 228	

neuronal firing rate in the LIP during decision-making also exhibits discrete ‘stepping’ dynamics 229	

(Latimer et al., 2015, 2016; also see Shadlen et al., 2016). When pooled over all trials, the ensemble 230	

averaging mimics the continuous diffusion-to-bound dynamics both in neuronal (Latimer et al., 231	

2015) and behavioral levels (Church et al., 1994). Research shows the acquisition of the onset and 232	

offset of the step pattern is asymmetric (Balcı et al., 2009; MacDonald et al., 2012). Animals can 233	

quickly learn the temporal criterion and initiate burst responses to the trained temporal criterion 234	

during the first several sessions. However, when to stop their responses is acquired separately at a 235	

relatively late stage (e.g., Balcı et al., 2009). The separate acquisition of the start and stop time is 236	

also supported by the evidence using intracerebral infusions of the protein synthesis inhibitor 237	

anisomycin in tracking temporal functionality (MacDonald et al., 2012), in which the differential 238	

acquisition of the start and stop times was found to depend on normal functioning in the dorsal 239	

striatum (DS) and the ventral striatum (VS), respectively. 240	

The step pattern of responses and the dynamic acquisition of the start and stop signals have 241	

two important implications. First, in contrast to the single-shot response models, subjects have 242	

sufficient ability to store multiple temporal criteria, as typically assumed by the STT model 243	

(Church, 2003; Gibbon et al., 1984), and to judge the difference between the stored time and elapsed 244	
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time (Gallistel, 1990; Gallistel & Wilkes, 2016; Ward et al., 2012; Wilkes & Gallistel, 2017). To 245	

incorporate this, ramping models must consider not a single fixed threshold, but multiple thresholds 246	

(e.g., Balcı & Simen, 2014), and the thresholds must be adjustable. The neural oscillator models 247	

applying coincidence detection with trial-to-trial scalar variability could, in principle, use a lower 248	

coincident activation threshold to capture the step-like responses. The goodness of fit of this 249	

approach is yet to be validated. Alternatively, using the ability to store multiple intervals 250	

simultaneously, as proposed in the EIO model (Gu et al., 2015), could be another solution to this 251	

dynamic acquisition. The second implication of the dynamic acquisition is that the target temporal 252	

criterion is acquired quickly, but the reliability of the acquired temporal criterion increases 253	

gradually over sessions. Thus, the coefficient of variation (CV), measured by the ratio of the 254	

standard deviation to the mean, is not constant during acquisition but approaches a stable value 255	

once the steady-state performance is achieved. This poses a challenge to ramping models, which 256	

assume the interval and the drift rate have an inverse relation and the drift rate is fixed when the 257	

temporal criterion is acquired. It is then a challenge to balance the proportion of the opponent 258	

Poisson diffusion process and the excitatory rate such that the CV is decreasing while the interval 259	

remains unchanged. Oscillation models (e.g., the SBF model), on the other hand, ascribe a 260	

mechanism for possibly detecting the start and stop signal to MSNs within the DS and VS 261	

(MacDonald et al., 2012), providing neural networks for this dynamic temporal acquisition. Yet, a 262	

quantitative validation of asymmetric acquisition with oscillatory models is needed in future 263	

research. 264	

 265	

3.2. The Onset Problem in Retrospective Timing 266	

 267	

Both ramping and oscillator models have been first developed specifically for prospective timing, 268	

which implicitly assumes an onset to start the ramping process or synchronization of oscillators. 269	

For example, the SBF model assumes that the phases of oscillators are reset by a burst of 270	

dopaminergic input from the VTA at the beginning of the stimulus onset (Matell & Meck, 2004), 271	

and the opDDM starts a ramping process with a bistable switch (Simen et al., 2011). The onset 272	

assumption is valid for prospective timing given that the associative learning has already been 273	

acquired and subjects know which event is a critical onset event. With the implicit requirement of 274	

an onset, both types of models are less applicable to retrospective timing. For example, during an 275	

initial phase of the associative learning, multiple sequential events in a trial, such as the subject 276	

entering the box and light/sound turning on/off, are potential candidates for subjects to start a timer 277	

for predicting the reward (Gallistel, 2003; Gallistel & Wilkes, 2016). Given that onsets and offsets 278	
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could be many over multiple events (see Fig. 1 for an example), each triggering a ramping process 279	

or a coincidence detection process is unrealistic for any neuronal implementations. More likely, 280	

instead of using multiple onsets and related ramping or phase-reset processes, subjects may use 281	

discrete point events as states to infer critical intervals during associative learning of a target 282	

interval. Some researchers suggest that discrete sparse representation of point events likely takes 283	

place in episodic memory in the hippocampus (Eichenbaum, 2014, 2017; MacDonald et al., 2014; 284	

Rolls & Mills, 2019). Sparse point events coded by phases of oscillators or intrinsic sequential firing 285	

chains would be efficient coding schemes for retrospective timing. 286	

The onset problem generally exists in associative learning. When a reward follows various 287	

event cues, which are often ambiguous in real scenarios, humans and other animals must 288	

retrospectively figure out relevant events/intervals that are predictive of critical rewards. 289	

Researchers have proposed various models to deal with such ambiguous associative mapping 290	

problems (Gallistel & Wilkes, 2016; Namboodiri & Stuber, 2021; Starkweather et al., 2017; Wilkes 291	

& Gallistel, 2017). For example, Namboodiri and Stuber (2021) proposed that prospective and 292	

retrospective cognitive maps could account for many associative-learning phenomena, such as 293	

sudden acquisition of the contingency between a reward predictor and reward. The basic idea of 294	

their proposal is that brain circuits store not just the reward value of each state/event, but also the 295	

relationships between the various states in the environment in the form of transition probabilities 296	

(Starkweather et al., 2017; Sutton & Barto, 2018). Thus, the sequence and relation of states toward 297	

a reward can be stored in the form of a successor representation (prospective) and predecessor 298	

representation (retrospective) in a cognitive map. Separate storages of prospective and retrospective 299	

cognitive maps may seem inefficient and computationally expensive. However, the authors propose 300	

efficient neural mechanisms in which the prospective transition probability can be mathematically 301	

calculated from the retrospective transition probability based on Bayesian theory. 302	

 303	

3.3. Computational Accessibility of Encoded Intervals 304	

 305	

The fact that subjects can acquire the most likely interval among multiple candidate intervals during 306	

reinforcement learning has two important implications: (1) multiple retrospective intervals/events 307	

must be stored; and (2) those intervals/events must be in a computationally accessible form, a form 308	

that permits basic arithmetic computations for the cue competition selection (Gallistel & Gibbon, 309	

2000; Gallistel & King, 2009). Researchers have shown such computational ability in temporal cue 310	

integration and averaging of multiple intervals (e.g., Aagten-Murphy et al., 2014; De Corte & 311	

Matell, 2016a, 2016b; Gu et al., 2016; Matell & Kurti, 2014; Shi & Burr, 2016; Shi et al., 2013) 312	
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and during the two-step acquisition process for transitioning from one temporal criterion to another 313	

(MacDonald et al., 2012; Meck et al., 1984, 2013). 314	

In the original STT, the computational accessibility is inherited in the linear accumulation 315	

(i.e., pacemaker pulses), such that basic arithmetic computation is possible. However, the model 316	

encounters an unbound problem for long intervals, as ensuring a large-enough accumulator is 317	

unrealistic for neuronal implementation (Matell & Meck, 2000, 2004). Other ramping models also 318	

carry temporal information about elapsed time within the ramping range. However, it is challenging 319	

to compare different ramping activities when the ramping rates are different for different target 320	

intervals (e.g., opDDM assumes different drift rates for the short and long intervals). Oscillator 321	

models with coincidence detection encounter similar challenges with computational accessibility, 322	

because the phase patterns of the oscillators are often arbitrary. The brain must then resort to 323	

additional resources and processes to compute time differences between multiple intervals. In 324	

contrast, multiple-oscillator models (Church & Broadbent, 1990; Gu et al., 2015) could, in 325	

principle, preserve the magnitudes of the interval timing and the computational accessibility (e.g., 326	

in log-spacing oscillators). 327	

 328	

4. Integrating Neural Oscillators with Computational Accessibility 329	

 330	

As we briefly reviewed above, by far the most challenges for interval timing models come from 331	

dynamic interval acquisition and retrospective timing, where multiple intervals must be stored and 332	

compared in a computationally accessible manner. To address this, we first explore possible coding 333	

schemes and read-out mechanisms that brains may use. 334	

 335	

4.1. Neural Oscillators and Internal ‘Clocks’ 336	

 337	

Given that intervals and point events (such as onsets and offsets) are two basic forms in associative 338	

learning (Gallistel & Wilkes, 2016) and each interval is demarcated by two point events, an efficient 339	

encoding scheme would represent one basic form, inferring the other. Note that representing 340	

multiple intervals alone does not provide any information about the order of point events. In 341	

contrast, encoding point events in a computation-accessible manner makes inference of intervals 342	

possible. Moreover, reinforcers are often coupled with critical point events (Killeen & Fetterman, 343	

1988; Machado, 1997). Following Occam’s principle, encoding point events rather than multiple 344	

intervals is likely to minimize the representational complexity (Figure 1). Encoding point events 345	

entails a memory process that can accommodate prospective and retrospective timing. 346	
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Retrospective timing corresponds to the accumulation of evidence for the current event (e.g., time 347	

intervals relative to previous point events), namely, updating beliefs about the causes of previous 348	

sensory samples, while prospective timing makes predictions about future events (e.g., the current 349	

point in time becomes an onset or a predictive cue of a future event). Thus, the point event 350	

representation scheme potentially solves the onset problem, as well as serving the state 351	

representation with inherited temporal relationships among point events. The brain does not need 352	

to initiate multiple ramping or synchronization processes, but simply associates important discrete 353	

events with the point representations, better matching the sparse event/object representations in the 354	

hippocampus (Rolls & Mills, 2019). 355	

In fact, recent studies have shown event-associated temporal activities in the human memory 356	

system (Eichenbaum, 2014; Rolls & Mills, 2019; Umbach et al., 2020). For example, time cells fire 357	

sequentially at specific points in time (Eichenbaum, 2014; Issa et al., 2020; MacDonald et al., 2011). 358	

Similarly, oscillatory patterns in SBF (Matell & Meck, 2000, 2004) and EIO models (Gu et al., 359	

2015) can be treated as coding point events. The pattern shown at a specific time in SBF is 360	

determined by the phases of ensemble cortical neurons that oscillate at their endogenous 361	

frequencies. Likewise, the EIO model extends oscillations to coupled excitatory–inhibitory 362	

oscillation to address the shared oscillatory properties of interval timing and working memory. The 363	

excitatory phases of the oscillators can serve as timestamps for point events (Figure 2A). Given that 364	

those oscillatory patterns will recur when the interval is long enough (Matell & Meck, 2004), the 365	

sequence of oscillatory patterns working as a clock requires multiple long-cycle oscillators. 366	

Although not commonly reported, long-cycle oscillatory activities have been shown in the 367	

hippocampus neural spikes of anesthetized rats (~11 minutes) (Clement et al., 2008), in calcium 368	

signals (Mitra et al., 2018), in EEG signals (Monto et al., 2008), and in the circadian rhythm cells 369	

(Green & Gillette, 1982). 370	

It is worth noting that the encoding timing in oscillatory phases is not limited to neurons 371	

with intrinsic oscillation. A ring attractor network can also generate oscillatory patterns (Fig. 2B), 372	

in which neurons are functionally arranged on a ring with a rotation-invariant connectivity 373	

(Boucheny et al., 2005; Popovych et al., 2011; Seeholzer et al., 2017; York & van Rossum, 2009). 374	

With strong recurrent connections and appropriate adjustment of connection weights, such a ring 375	

attractor model can generate self-sustained firing activities at a specific location (‘bump’ state). 376	

Some have suggested the ring network as the working memory representation of physical 377	

magnitudes, such as spatial orientation, angular position, and head direction (Dieterich et al., 2018; 378	

Seeholzer et al., 2017; York & van Rossum, 2009; Zhang, 1996). When two or more rings are 379	

appropriately combined (Xie et al., 2002; Zhang, 1996), constant external input to the rings can 380	
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generate a moving-bump state, that is, an oscillation that depends on the strength of the input. 381	

Similar computational circuits may also serve as the basis of self-generated sequences of neuronal 382	

firing patterns in the hippocampus, entorhinal, prefrontal, and parietal cortex that exhibit oscillatory 383	

characteristics (Buzsáki & Llinás, 2017; Pastalkova et al., 2008; Rolls & Mills, 2019; Tsao et al., 384	

2018). For example, opponent ramping cells in the lateral entorhinal cortex can be simulated as an 385	

integrate-and-fire attractor network to generate EIOs (Rolls & Mills, 2019), similar to the EIO 386	

model (Gu et al., 2015). 387	

 388	

4.2. Oscillatory Patterns with Computational Accessibility 389	

 390	

Although all oscillatory patterns could, in principle, represent point events, the efficacy of read-out 391	

of the order relation between events varies dramatically among different models. Most oscillatory 392	

models do not specify how oscillatory patterns should be stored for the temporal-order relation. The 393	

EIO model (Gu et al., 2015), though not explicitly mentioning the patterns for the order of point 394	

events, uses a set of different frequencies of oscillators, similar to the multi-oscillator model 395	

(Church & Broadbent, 1990). The pattern based on multifrequency oscillators has a potential ability 396	

to encode the order of temporal events. The ring attractor network, on the other hand, has implicit 397	

sequential coding for the order of events. Note that individual oscillatory patterns can only represent 398	

a limited range of time intervals. When the interval exceeds the range, it begs for additional 399	

oscillatory sequences with lower frequencies or ring attractor networks with slow propagation 400	

speed. Thus, in principle, a combination of multifrequency oscillators or different sizes of ring 401	

attractors (Navratilova et al., 2012) can represent a wide range of temporal events. Those oscillators 402	

can be distributed across the network of different neuronal regions (Ivry & Schlerf, 2008; Ivry & 403	

Spencer, 2004). 404	

Yet, we must consider another key signature in the selection of oscillatory patterns — the 405	

scalar property. The scalar property naturally leads to the Weber–Fechner law (Fechner, 1860). 406	

That is, the internal representation of the external magnitudes is likely on a logarithmic scale. The 407	

logarithmic scale of representation is regarded as a natural result of a set of optimized sensors to 408	

minimize a relative error measure (Portugal & Svaiter, 2010; Sun et al., 2012) for an uncertain 409	

world (Howard, 2018; Howard & Shankar, 2018). It is interesting to note that our numerical 410	

notation system exactly uses the logarithmic coding. For example, magnitudes within 1000 require 411	

only three digits, each with 10 states. The grid cell system in the entorhinal cortex (see Moser et al., 412	

2008 for a review ) uses a very similar scheme to provide a metric for two-dimensional space and 413	

is an example of spatially periodic coding. The grid cell system is thought to consist of toroidal 414	
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attractor networks that are driven by running speed. Different ‘grids’ with increasing spacing are 415	

organized along the entorhinal cortex, with each grid representing a range of distances, like one 416	

digit of a multidigit mileage counter, or like the periods in a multi-oscillator system. Similarly, the 417	

logarithmic coding scheme can be realized by using log-spacing oscillators with a half-phase coding 418	

scheme, such as EIO oscillators (Gu et al., 2015) or opponent ramping processes in an attractor 419	

network (Rolls & Mills, 2019). It should be noted that each half-phase of a given frequency is coded 420	

by the active ‘on’ states of the opponent oscillators (see dashed vs solid lines in Fig. 2). The read-421	

out of the two oscillatory phases can be regarded as a chain of combinatorial binary symbols (see 422	

Figs 2A and 3A). 423	

The fact that time cells in the hippocampus fire at a specific moment in time led researchers 424	

to suggest that time cells are essential for discrete time stamping and binding sequential events in 425	

memory (Eichenbaum, 2014; Issa et al., 2020; MacDonald et al., 2011; Rolls & Mills, 2019). To 426	

efficiently store those read-out combinatory nodes from the multifrequency oscillators, here we 427	

propose that those redundant nodes (mainly from low-frequency EIOs based on their similarity in 428	

population coding) are shared across events. Specifically, codes from the read-out that do not differ 429	

from the preceding codes in the low-frequency phases will share the same memory representation 430	

(see illustration in Fig. 3B line connections). Such shared representation has an additional benefit 431	

— robust against noise perturbation. Even when some noise corrupts the shared nodes of two 432	

adjacent events, the temporal relation between two events remains intact. Such robust memory of 433	

the temporal vicinity also occurs in our daily life. For example, you may not correctly remember 434	

which day you had a conversation with your friend A before visiting your friend B, but you still 435	

remember the temporal relation between events A and B. 436	

Unlike other arbitrary oscillatory patterns, calculating time intervals between any two stored 437	

events is relatively easy for the log-spacing combinatorial codes. The realization could be first 438	

comparing correspondent nodes of the same frequencies from two events, then summing up their 439	

represented time intervals together: 440	

𝑇 = 𝑘$
𝑆!
(#) − 𝑆!

(%)

𝑓!

&

!'%

 441	

where {𝑆!
(%), 𝑖 = 1,… 	𝑛} and {𝑆!

(#), 𝑖 = 1,… 	𝑛} are two combinatorial codes, and {𝑓! , 𝑖 = 1,… , 𝑛} 442	

their corresponding frequencies. 𝑘 denotes a normalization coefficient. 443	

One interesting outcome of such interval computation with the shared representation is that 444	

those shared nodes (low frequencies), corrupted or not, do not influence the interval estimation. 445	

Thus, intervals with the same length should be equally precise, independent of their location in the 446	
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sequence, as long as the memory decay is negligible. However, short relative to long intervals have 447	

fewer independent nodes that are subjected to noise perturbation and global nuisance correlations. 448	

Given that the number of independent nodes is proportional to the log-scale of the represented 449	

intervals, the noise perturbation and/or global nuisance correlation to the independent nodes would 450	

naturally lead to the scalar property. 451	

 452	

5. Prospective and Retrospective Timing 453	

 454	

The multifrequency oscillators with discrete time stamping in memory are suitable for both 455	

prospective and retrospective timing. Time stamping for discrete sequential events in memory 456	

(Eichenbaum, 2014; Issa et al., 2020; MacDonald et al., 2011; Rolls & Mills, 2019) could 457	

potentially solve the onset problems encountered by those prospective timing models. Representing 458	

all events in memory also enables the brain to learn to time (Killeen & Fetterman, 1988; Machado, 459	

1997) and discriminate the critical interval from other intervals (Gallistel & Wilkes, 2016; Wilkes 460	

& Gallistel, 2017). Using the multifrequency oscillatory patterns as time stamping also preserves 461	

the temporal relationships among critical states/events, which enables efficient calculation of the 462	

predecessor representation in a retrospective cognitive map (the distance from a reward state to any 463	

predecessor event is computationally accessible through the event timestamps). In addition, the 464	

sparse shared representation of the combinatorial codes boosts the efficiency of memory usage and 465	

keeps the sequential structure of the events. The scalar property observed in behavioral results 466	

(Gibbon, 1977; Gibbon et al., 1984; Simen et al., 2013) is thus due to this shared representation of 467	

time events in memory. One prediction of this shared representation is that the number of 468	

independent nodes will increase proportionally to the number of events, which would eventually 469	

reduce the precision of the representation, considering limited memory resources. In other words, 470	

the observed Weber fraction may depend on the number of events within a given interval. 471	

One critical feature of prospective time is that we have a continuous sense of the passage of 472	

time. This is a natural outcome from the accumulator in ramping models (e.g., Gibbon et al., 1984; 473	

Simen et al., 2011), while it is lacking in oscillatory models (Matell & Meck, 2000, 2004; Oprisan 474	

& Buhusi, 2011). The model of multifrequency oscillators with computational accessibility, 475	

however, preserves the continuous sense of time through computation. The flow of time is a 476	

continuous calculation of the timestamp of ‘now’ to preceding critical events, forming a sequence 477	

of intervals. It is also possible that the continuous sense of time comes directly from the ramping 478	

cells embedded in the attractor neural networks in the oscillatory system (Issa et al., 2020; Rolls & 479	



Beyond Scalar Timing Theory 
 
 

16 
	

Mills, 2019). Furthermore, despite a periodic multilayer representation of space in the entorhinal 480	

cortex (Moser et al., 2014), our sense of distance and position in the horizontal plane is continuous. 481	

 482	

6. Concluding Remarks 483	

 484	

It is a challenge to develop neurobiological plausible models to account for multifaceted aspects of 485	

interval timing. The stochastic ramping, the neural oscillator and time cells provide possible neural 486	

implementations of the prospective timing and some of them incorporate the scalar property of the 487	

interval timing. Those models, however, lack computational accessibility for retrospective timing. 488	

Here, we propose a conceptual model with multifrequency oscillators, extended from the EIO 489	

model, to incorporate computational accessibility, suitable for both prospective and retrospective 490	

timing. The model assumes that the event read-out phase patterns from the multisensory oscillators 491	

are stored in a shared memory and intervals are calculated based on the represented combinatorial 492	

nodes, with the shared representation potentially causing the scalar property. It should be noted that 493	

making this conceptual model biologically feasible, several challenges remain to be solved. For 494	

example, the multi-oscillator coding scheme requires slow cycle oscillators for minutes and hours 495	

in neural spikes, which are relatively rare (except the circadian rhythmic cells). It also remains 496	

unclear concerning neural circuits of interval computation between two oscillatory patterns. 497	

Nevertheless, our model provides a feasible way to incorporate both retrospective and prospective 498	

timing. 499	

 500	
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 733	
Figure 1. Illustration of the onset problem. Often there are multiple events and multiple intervals. For example, four 734	
consecutive point events (P!, P", P#, P$) can construct six different intervals {I%&}. The construction power of point events 735	
and intervals is asymmetric. The point events can fully determine the intervals, whereas the intervals cannot determine 736	
the order of point events. 737	
 738	

 739	
Figure 2. Possible neural oscillators for tracking time. (A) An ensemble of excitatory–inhibitory oscillation (EIO)-740	
based neurons oscillates at their endogenous frequencies. The excitatory patterns can serve as read-out of the point 741	
events (adapted from Gu et al., 2015; Matell & Meck, 2004). Note, the ‘OFF’ phase of one oscillator is co-represented 742	
by the ‘ON’ phase of a correspondent opponent oscillator (solid vs dashed) (B) A ring attractor network with strong 743	
recurrent connections. The neurons are arranged in a ring and connected with distance-dependent connection weights 744	
to all other neurons. The firing of a neuron inhibits all other neurons and strongly excites neurons close to it (the bottom 745	
panel with red color for excitation and blue color for inhibition). With appropriate connection weights and short-term 746	
synaptic plasticity, the firing activities propagate as a traveling wave (Dieterich et al., 2018; Seeholzer et al., 2017; 747	
York & van Rossum, 2009; Zhang, 1996). The traveling wave exhibits similar oscillatory characteristics with temporal-748	
order information (the upper panel simulates a ring attractor with 100 neurons). 749	
 750	
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 751	
Figure 3. A schematic illustration of multifrequency oscillators for encoding time. (A) A set of log-spacing half-phase 752	
signals engendered by multifrequency excitatory–inhibitory oscillation (EIO) oscillators. A realization of the two states 753	
could be an attractor network with opponent EIOs. When a critical event occurs (T!, T", T#. . . ), the read-out of the 754	
phases of the EIO oscillators are then transferred to memory with the associated event. (B) In the memory stage, those 755	
read-out nodes are stored in a shared memory for efficient representation (illustrated by colored nodes and the line 756	
connection). Nodes from the readout that do not differ from the previous nodes in the low-frequency oscillators will 757	
share the same memory representation. Such shared representation is sparse and computationally efficient. It also 758	
engenders the scalar property (see details in the text). 759	
 760	


